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This paper presents a “hybrid” method of numerical simulation of collisionless 
plasmas in which weighted particles are advanced as in particle simulations, but in 
which the distribution function is reconstructed periodically by a local averaging 
operation as in numerical solutions of the Vlasov equation. The rates of diffusion 
resulting from repeated averaging of the distribution function are estimated. These 
rates indicate that it is possible to minimize the effects of both beaming instabilities 
and diffusion by properly choosing the frequency of reconstruction of the distribution 
function. A computer code was written to implement this method and numerical solu- 
tions of two-stream instability problems are presented. 

1. INTRODUCTION 

Computational studies of the dynamic behavior of plasmas have generally been 
carried out either by using particle simulation methods or by solving the Vlasov 
equation numerically. The purpose of this paper is to present “hybrid” solutions 
in which weighted particles are advanced as in particle simulations, but in which 
the distribution function is reconstructed periodically as in Vlasov solutions by a 
local averaging operation in phase space. The problems considered are one- 
dimensional with periodic boundary conditions, and involve only electrons 
moving over a uniform, positively charged background. 

In particle simulation of plasmas, the positions and velocities of a large number 
of particles moving in their self-consistent (and any externally imposed) fields are 
computed as a function of time [l-5]. Thus the complete dynamical state of the 
system is known at every time step, and average quantities of interest, such as 
number densities or temperatures, are computed whenever desired. The initial 
positions and velocities of the particles may be chosen either randomly or in 
ordered manner to simulate the actual initial conditions of the plasma. In a random 
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initialization, the initial positions of the particles are chosen to represent the 
initial density and their initial velocities are chosen at random with probabilities 
corresponding to the initial velocity distribution. This initialization procedure is 
simple and conceptually close to actual physical conditions. However, since the 
number of simulation particles is necessarily much smaller than the number of 
particles found in actual plasmas, the fluctuations appearing in the averaged 
quantities, such as the electric field, mean velocity or thermal velocity, are much 
larger in the simulation plasma than in the actual plasma. These fluctuations may 
be reduced by increasing the number of simulation particles, but they drop only 
as N-1/2, where N is the number of simulation particles. The number N is, of course, 
limited by the computer capacity. 

When all the simulation particles representing a given specie are identical, many 
particles are needed to represent the larger values of the distribution function 
while proportionally few particles are available to represent the smaller values. 
The discrete nature of the simulation plasma is therefore particularly evident in 
regions of the phase plane where the density in phase is small, such as in regions 
corresponding to the tails of the distribution function. Particle simulation methods 
using weighted particles, all having the same charge over mass ratio, but with 
varying charges and masses, have been used to improve the representation of the 
plasma in regions of low density in phase [5]. These methods are useful to study 
resonant interactions between waves and a relatively small number of particles, 
such as occurs in Landau damping. To initialize the computations in this case, the 
phase plane may be covered with a grid having mesh sizes Ax and Au. A weighted 
particle is then located at each grid point, with a charge and mass proportional to 
the local value of the initial phase density. This initialization technique, which does 
not introduce any random fluctuations in the simulation plasma, is an example of a 
quiet start. We observe, however, that the particles now form a set of discrete small 
beams, which are subject to instabilities having growth rates proportional to kdv, 
where k is the wave number [6]. Thus, while the simulation plasma is initially 
quiet, it may be affected by growing spurious oscillations. 

An alternate approach to the computational study of collisionless plasmas is 
provided by numerical solutions of the Vlasov equation [7-121. Let L denote the 
periodicity length of the plasma and We the plasma frequency. Distances will be 
measured in units of L and times will be measured in units of CO;‘. It follows that 
the electric field is measured in units of mLwD2/e where e and m are the electron 
charge and mass. The one-dimensional Vlasov equation then takes the form 

w/w + VW/W - -w?lW = 0, (1) 

wheref(x, v, t) denotes the electron distribution function and E(x, t) is the electric 
field. Let E(x, t) = Eext(x, t) + ,?F(x, t), where EeXt is an external electric field 
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and Eint is the internal field due to electrons and the positively charged background. 
The internal field is determined by Poisson’s equation 

aEint 
-z 

ax 1 - J‘:Df.du. 
-cc (2) 

The solutions of the Vlasov equation obey the principle of conservation of 
density in phase. The density in phase is the distribution function itself in the 
present case. Let (x0 , O v ) denote the coordinates of a particle in the phase plane 
at time t, , At time t, the particle has moved to the phase point (x, v). Conservation 
of density in phase requiresf(x, v, t) = f(xO , uO , to). 

An important property of the solutions of the Vlasov equation is their tendency 
to acquire increasingly fine structures in phase plane as time increases. This 
phenomenon may be illustrated in terms of the oscillations of an electron gas 
trapped in the potential trough of an external electric field of the form 

-X 

(a) t = 0 

‘TRI 

(b) t’2rTR 

FIG. 1. Example of the development of fine structures in the solutions of the Vlasov equation. 
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E = E, sin 2rrx/L. Neglecting the internal field which would not change the results 
qualitatively, the electron trajectories are given by Jacobi elliptic functions, 

sin(7rx/L) = K sn(u, K), 

Z&R = K CtZ(U, K), 

with u = 2ntJTTR + u,, . Here rTR denotes the trapping period and vTR the trapping 
velocity. The modulus K and the constant uO depend on the initial electron coor- 
dinates in the phase plane. The limit cycle defining the boundary between trapped 
and untrapped electrons in the phase plane is shown in Fig. 1. If the electrons are 
initially distributed uniformly over the shaded area shown in Fig. I(a), their phase 
density at t = 2rTR will be uniformly distributed over the shaded area shown in 
Fig. l(b). In the present case, the development of the fine spiral structure near the 
limit cycle is caused by the sharp amplitude dependence of the period of oscillations 
of trapped electrons in this region. As time increases, the description of the distribu- 
tion function requires an ever finer resolution which ultimately exceeds the finite 
capacity of computer storage. 

This phenomenon has been discussed by Lynden-Bell [13] in relation to the 
approach to equilibrium of solutions of the Vlasov equation. When the structure 
becomes so fine that its scale is much smaller than the characteristic lengths and 
velocities of the plasma phenomena of interest, its description may be abandoned 
and a coarse-grained distribution function&, a, t) defined by averagingf(x, v, t), 

1 f(x, v, t> = ss +” w,(x’) w,(v’)f(x + x’, v + v’, t) dx’ dv’. (3) 
0 --m 

The weight functions w,(x) and w,(v) define the resolution and the exact form of the 
averaging operation. The choice of these functions is an important consideration 
in numerical solutions of the Vlasov equation. 

By reversing the sign of t in Eq. (1) it may be observed that solutions of the 
Vlasov equation are reversible. However, the averaging operation defined by (3) 
amounts to neglecting some of the information contained in the fine structure of 
f(x, v, t). Thus numerical solutions of the Vlasov equation using this averaging 
operation are not exactly reversible. Since the computation of the coarse-grained 
distribution function also involves the averaging of different neighboring values 
of the original distribution function, the principle of conservation of density in 
phase no longer applies exactly to the coarse-grained distribution function. 

2. ALGORITHM 

The hybrid solution algorithm is presented by first considering a numerical 
solution of the Vlasov equation. According to the principle of conservation of 
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FIG. 2. Characteristics of Vlasov equation in phase plane. 

density in phase, an exact solution of the Vlasov equation may be written formally 
as 

f(x + ax, 0 + 6v, t + At) = f(x, 0, t) (4) 

in which 6x and 6v are the position and velocity increments during the time interval 
d t of a particle located at (x, v) at time t. The phase plane is covered with a rectan- 
gular grid with mesh sizes dx and dv as shown in Fig. 2. The grid extends from 
-urnax to +vmax and the value of vmax is chosen large enough so that the grid 
covers all significant portions of the phase plane. 

The position and velocity increments are computed by considering sample 
particles of masses f(xi , vk , t) located at the grid points (xi , vk), and computing 
their position and velocity increments kik and 6vjk during the time interval dt. 
The sample particle locations in the phase plane at t + dt no longer correspond 
to grid points and the distribution function must be reconstructed at that time by 
distributing the mass of each sample particle among the neighboring grid points, 

jbj’ , uk’ , ~+~~)=~f(x~+~Xjk,~k+s~jk,~+d~) 

j.k 

x w&j’ - xj - 8Xjk) w,(&’ - ibjk). (5) 

Applying this operation to the solution of Vlasov’s equation (4) yields 

.f(xj’ 3 vk’ 2 f + dt) = cf(xj 3 vk ) t) 

j.k 

x w&j’ - xj - 6x,,) &‘,(vk’ - vk - hjk). (6) 
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The weight functions w, and w, determine what fraction of the mass of a sample 
particle is assigned to each neighboring grid point. The discrete sum in Eq. (5) 
defines an averaging operation similar to Eq. (3). In the present method the 
averaging operation must be carried out by a discrete sum instead of an integral 
since the phase plane itself has been discretized by the introduction of a grid. Weight 
functions for which the averaging operation conserves any finite number of 
moments are derived in Section 3. It is not possible, however, to derive functions 
w, and w, for which all moments of the distribution function are conserved, as is 
done in the Fourier-Fourier transform method [ll, 181. This results in some 
diffusion of the distribution function in the phase plane with rates which are 
estimated in Section 3. 

The evaluation of the position and velocity increments Sxjk and 6v,, of the 
sample particles is presented in Appendix A. The method uses an area weighting 
scheme and is based on a Lagrangian formulation of particle dynamics in which 
energy is conserved [ 191. 

In a number of problems of physical interest, the initial distribution function 
consists of several relatively cold beams and only a fraction of the phase plane is 
occupied by particles, As the solution proceeds in time, the principle of conserva- 
tion of density in phase (which is still approximately satisfied by the numerical 
solution) requires that this fraction must remain constant. Where no particles are 
present, the distribution function is zero and does not need to be advanced. This 
is achieved in the code by setting a threshold value (for example 1O-5 times the 
maximum value of the distribution function) below which no sample particle is 
considered. The electric potential is computed by Fourier transforms so that the 
electron density is automatically renormalized at each time step. Thus, the slight 
loss of particles resulting from a finite threshold does not result in the build up of a 
net charge in the plasma. This feature of the direct method of integration of the 
Vlasov equation, which has no counterpart in transform methods, may yield a 
considerable saving of computing time when multidimensional problems are 
considered. 

It is not necessary to reconstruct the distribution function by the averaging 
operation (6) for every time step at which the electric field is computed. If dt is 
the time step used to advance the sample particles, the electric field needs to be 
computed after each At increment, but the distribution function can be recon- 
structed only every NAt, where N is a properly chosen integer. In addition to saving 
computing time, this procedure reduces the diffusion in phase plane caused by 
application of the averaging operation. 

The Vlasov solution described above in which the distribution function is 
reconstructed only every N-th time step begins to resemble particle simulations and 
it seems appropriate to call it a “hybrid” solution. As noted in the introduction, 
particle simulations in which weighted particles are loaded on an (x, v) grid to 
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represent the initial distribution function have been used [5]. In particle simulation, 
however, the distribution function is never reconstructed (N = co) and the simula- 
tion plasma is subject to beaming instabilities. An evaluation of the amplitudes 
and growth rates of these instabilities, based on Dawson’s theory [6], is presented 
in Section 5. This evaluation shows that beaming instabilities have particularly 
strong effects on particle simulations after a time 27~/k~&lv, where kmax is the 
maximum wavenumber retained in the solution. By reconstructing the distribution 
function at time intervals which are short compared to 2+kmaxAv, the simulation 
plasma is forced to behave as a continuum and no beaming instabilities can develop. 

Examples of numerical solutions involving two-stream instabilities are presented 
in Section 4. These examples confirm that it is possible to minimize the effects of 
both beaming instabilities and diffusion by properly choosing the frequency of 
reconstruction of the distribution function. 

3. WEIGHT FUNCTIONS 

To derive weight functions w,(x) and w,(v) for which the averaging operation 
defined by Eq. (5) conserves a finite number of moments it is sufficient to consider 
the one-dimensional operation 

f(v,,) = -yf(Vj + SVj) W(Vj, - vj - SVj). (7) 
j 

The weight functions thus found will be applicable to either coordinate or velocity. 
Such weight functions, conserving zeroth, first and second order moments have 
been derived by K-W Li [8]. 

a. Moment Conservation Conditions 

The moment of order n before averaging is 

After averaging the same moment becomes 

(5”) = F Vj?jl(Vf). (9) 

Substituting (7) into (9) and reversing the order of the sums overj andj’ yields 

(5”) = Cf(v, + SVj) c ?$,W(Ly - vj - SVJ. 
j j’ 

&/g/I-6 
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The moments (8) and (9) are therefore equal if the equality 

F V;W(Vj’ - t’j - 6Vi) = (Vj + 6Vj)” (10) 

holds for all values of vj + Svj . 

b. Derivation of Weight Functions 

Let k = j’ - j, since the variable v is represented on a grid with mesh size dv we 
have vi’ = (j + k) dv, vj, - vj = kdv and vj = jdv. The moment condition (10) 
becomes 

T (.I’ + W d(k - P> dvl = (j + PI”, (11) 

wherep = 6vJAv. We may assume without loss of generality that 6vi is positive and 
smaller than the mesh size Au so that 0 < p < 1. The function w(v) is now assumed 
to be even and to extend over Q meshes Au on either side of the origin. The condi- 
tion (11) is satisfied if 

f k’“w[(k - p) Au] = pm w 
k=l-Q 

form = 0, l,..., n. All moments up to order n will then be conserved. 
We first assume that n is odd and set Q = (n + 1)/2. Consider the Lagrangian 

interpolation with n + 1 points of the function pm. Since m < n, the interpolation 
is exact and we have [20] 

2 k”AF+“(p) = pl”, 
k=l-Q 

in which the functions A?+‘) ( p) for I - Q < k < Q and 0 < p < .l are the 
Lagrangian coefficients with IZ + 1 points. Comparing (12) and (13) yields the 
desired weight function, 

or 
w[(k - p) Au] = Ap+l’(p), 

w(v) = A/f-) i 
v k - dtl , ! for (k-l)v<v<kAv (14) 

with k = (1 - n)/2,..., (1 + n)/2. F or n even, we set Q = 1 + n/2. The Lagrangian 
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coefficients in this case do not yield even weight functions. Even weight functions 
may, however, be obtained by symmetrization as follows, 

w(u> = ; k?+l) (k - +-) + A$’ (1 - k + +--)I 

(k-l)Au<v<kAdv, (15) 

~dc~u~(~+i)du, 

with k = 1 - n/2,..., n/2. 

c. Examp Ies 

For n = 1 the averaging operation (7) conserves particles and momentum. Since 
n is odd, Eq. (14) is applicable and we have 

w(‘)(u) = A?‘[1 - (v/Au)] = 1 - (v/Au) 

for 0 < v < Au. In the interval -Au < u < 0, the function w(l)(a) is defined by 
symmetry and it is zero for ] u 1 > Au. This function is illustrated at (a) in Fig. 3. 
For IZ = 2 the averaging operation conserves particles, momentum and energy. 
Since n is even, we apply Eqs. (15), 

\ for Av < u < 2Au. 

This function is illustrated at (b) in Fig. 3, it extends over four meshes and has 
negative side lobes. The fifth degree weight function W(~)(U) is illustrated at (c) in 
Fig. 3. This function extends over six meshes and has negative and positive side 
lobes reminiscent of the weight function sin(rv/Au)/(rv/Av) used in the Fourier- 
Fourier transform method [ 11, 181. 

Most of the computations presented in Section 4 are based on the quadratic 
weight function W(~)(U) for w,(x) and w,(v). However, some computations using 
linear and fifth-degree weight functions are also presented. 

The negative sidelobes in the quadratic and higher-order weight functions tend 
to produce small ripples in the reconstructed distribution function. This effect is 
similar to the Gibbs phenomenon in Fourier transforms and for small values of the 
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(b) n=2 

0.012 

w 

(cl n=5 

FIG. 3. Examples of weight functions for averaging of the distribution in phase plane. 

distribution function may give local negative values. The scale and amplitude of 
these ripples remain negligible if the mesh sizes are kept small compared to the 
local characteristic lengths and velocities of the plasma phenomena being con- 
sidered. 

d. DifSusion Rates 

After the sample particles have been advanced N time steps, their velocities are 
vj and the microscopic velocity distribution function is 

f(v) = ChS(v - Vj). 
j 

At this time the distribution function is reconstructed, using the weight function 
W(V), and the coarse-grained distribution function is 

f(v) = 1 j@(v - Vj)/dV. 
i 

To determine what features of the functionf(v) are lost when it is replaced byf(o), 
consider the Fourier transforms of both functions, called characteristic functions 
of the distributions [14], 

H(g) = j+m f(v) eiqv dv = cf,eiqu5, 
-m j 

(16) 
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and 

R(q) = Jtmf(u) eiqu dv = W(q) Cf;:eiqu. 
-ml j 

(17) 

Here the function W(q) denotes the Fourier transform of the weight function 
w(u)/dv. Plots of W(q) for linear and quadratic weight functions are shown in 
Fig. 4. 

Comparing Eqs. (16) and (17) yields 

WI) = H(q) Wd. (18) 

The reconstruction of the distribution function, therefore, appears as a smoothing 
operation in phase space. Values of H corresponding to low values of q represent 
large-scale features of the distribution function and should be left unchanged. 
However, values of H corresponding to high values of q, which represent fine 
structures of the distribution function are suppressed. 

To estimate diffusion rates, consider the quantity 

WI) = 1 - WI). 

After m reconstructions, the Fourier transform of the distribution function is 

1.2 

I?(q, m) = H(q, m = O)[l - D(q)]“. 

0.6- 

0.4- 

0.2 - 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 I.( 
qAv/a 

3 

FIG. 4. Fourier transforms of the weight functions ~(‘1 and ~1~). 
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Assuming D(q) < 1, which is valid for qAv/r < 1, this relation yields 

A(q, m) = H(q, m = 0) e-nzD(@. (19) 

Thus the quantity D(q) represents the diffusion rate of a feature of scale 2rrJq. 
Values of D(q) corresponding to linear and quadratic weight functions are given 
in Table I. For example, a feature with characteristic velocity v, = IOdv, for which 
qAv/.lr = 0.2, has a diffusion rate D2)(qA+ = 0.2) = 2.5 x 1O-3 corresponding 
to the quadratic weight function. The distribution function can, therefore, be 
reconstructed 400 times before this feature is reduced by an e-fold. In the case of 
beaming instabilities, the velocity scale is of the order of Au, i.e., qAv/z- N 1. We 
observe in Fig. 4 that D2)(qAv/7r = 1) = 0.4 and features at this scale are suppres- 
sed after a few reconstructions of the distribution function. 

TABLE I 

Diffusion Rates for Linear and Quadratic Weight Functions 

qAvln 0 0.1 0.2 0.3 0.4 

D’” 0 0.0082 0.0325 0.0719 0.1249 
D’2’ 0 0.0002 0.0025 0.0120 0.0353 

Note that the diffusion rates for qAv/rr Q 1 may be related to the moments of the 
weight function W(~)(V) by expanding Wn’(q) in Taylor series near q = 0. We 
have for n odd 

n+1 

D’“‘(q) = - 
d”+lQ,d”’ 

(nq+ 1) ! dqn+l a=o 
(20) 

where (vr)(“) denotes the moment of order r of the weight function w(“)(v). This 
relation shows that weight functions which conserve a larger number of moments 
yield less diffusion. For n even, the first non-zero moment is of order n + 2. 

The estimate of the diffusion rates given in this section does not take into account 
the discrete nature of the grid used to represent the phase plane in the present 
method. A more complete analysis of the diffusion process, given in Appendix B, 
shows that the above estimate gives the average diffusion rates assuming that the 
sample particles, before reconstruction of the distribution function, are located at 
random with uniform probability between grid points. 
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4. EXAMPLES 

Case 1: Two-Stream Instability with Equal Beams 

Consider a two-stream instability resulting from the initial conditions defined 
by the distribution function 

with 
f(x, u, t = 0) = f&)[l + 2E cos 27rx], 

f”(v) = (l/uFh d2iGj v2e-v2/2wH, 

and 0th = 0.3/n, E = 2.5 1O-2. These initial conditions correspond to a system 
length L = 10.5h, where h D = vtJw, is the Debye Length. The initially excited 
mode has a wavelength equal to the length of the system, i.e., corresponds to the 
first mode. The linear growth rates for this problem have been computed by Grant 
and Feix [17]. The first mode is the only unstable mode and has a growth rate 
y = 0.24. 

The electrostatic energy for four solutions of this problem is shown in Fig. 5. All 
four curves correspond to the same maximum velocity, Urnax = 4.2~~ , the same 
mesh sizes, dx = l/32 and dv = 2v max/l20 and the same time step At = 0.2. The 
threshold, i.e., the minimum value of the distribution function for which a sample 
particle is considered, was set to zero. 

3.0 

2.0 

U 

1.0 

FW 5. Electrostatic energy for two-stream instability with equal beams. 

The solid curve corresponds to a reconstruction of the distribution function 
every ten time steps, using quadratic weight functions. The broken line corresponds 
to a reconstruction of the distribution function at every time step, also using 
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quadratic weight functions. We observe in this case a decrease in the amplitude of 
trapping oscillations. This is attributed to a diffusion of the distribution function 
in phase plane due to repeated applications of the averaging operation defined by 
Eq. (5). Note that although energy is conserved in the averaging operation, higher 
moments are not conserved. This tends to flatten the distribution function resulting 
in the escape of trapped particles. The curve drawn with dashes and dots in Fig. 5 
corresponds again to a reconstruction of the distribution function at every time 
step. This time, however, linear weight functions were used. The distribution 
function flattens rapidly in this case, filling the hole located at the center of the 
trapping region. 

Because of the rather long tails in the distribution function in the present 
problem, particles are lost over the boundaries at u = *amax . For both solutions 
with quadratic weight functions, the relative particle loss is 4 x 10-4. After 
corrections for particles lost over the boundary, the relative energy error is 
5.5 x 10-5. For the solution with linear weight functions, the relative particle loss 
is 2.7 x 1O-3 and the relative energy error after correction for lost particles is 
6.2 x 10-2. 

A Vlasov solution for this example has been carried out by Denavit and Kruer 
[I 81 using the Fourier-Fourier transform method. The electrostatic energy for this 
solution is in good agreement with the solid curve in Fig. 5. Particle simulations 
have also been carried out by Armstrong and Nielson [12] and by Denavit and 
Kruer [18]. The results of these simulations also agree with the result of the present 
solution. 

An additional computation was carried out in which the distribution function 
was never reconstructed. The code then operated as a particle code with particles of 
different masses initially arranged in a regular array in the phase plane. Phase plots 
for this run showed beaming instabilities starting to appear at t = 10. The total 
electrostatic energy for this case is represented by the dotted curve in Fig. 5. We 
observe that spurious oscillations appear after t N 28. 

Case 2: Two-Stream Instability with Unequal Beams 

Consider now an instability resulting from the interaction of a small beam with 
a Maxwellian plasma. The initial conditions are 

with 

j-(x, v, t = 0) = fo(v) 
t 
1 + 2E F n cos(2T0zX + 4,) 

i 
) 

?&=I 

andv, = dZ 10-2, vd = 2.6~~) vb = 0.25v,, n, = 0.95, nb = 0.05, E = 2.5 x lo-* 
and initial phases & chosen at random. Thus the small beam contains 5 % of the 
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plasma and its mean velocity is 3.66 thermal velocities. These initial conditions 
correspond to a system length of lOOh, . 

The total electrostatic energy for three solutions of this problem is shown in 
Fig. 6. All three curves correspond to the same maximum velocity ZI,,, = 421, , 
velocity interval Llu = 2vmax /120 and time step dt = 0.2 with the distribution 
function reconstructed every 10 time steps. A threshold equal to 1O-5 times the 
maximum value of the distribution function was set. Below this threshold no 
sample particles were considered. 

Note that the present case involves five trapping regions (the fifth mode is the 
most unstable mode) so that smaller values of dx should be considered than in the 
previous case. The solid line in Fig. 6 corresponds to dx = l/128 with quadratic 
weight functions. The broken line corresponds to rlx = l/64, again using quadratic 
weight functions. The amplitude of trapping oscillations is reduced in this case. The 
curve drawn with dashes and dots in Fig. 6 corresponds to dx = l/64 using fifth- 
degree weight functions. We observe that the use of higher-order weight functions 
tends to reduce the diffusion of the distribution function in phase space. 

The relative particle loss with dx = l/128 and quadratic weight functions is 
4 x 1O-6 and the relative energy error is 3.5 x 10-4. Comparable values of the 
particle loss and energy error are found in the other two computations. 

The density in phase near saturation is shown in Fig. 7. Numbers from 1 to 9 
indicate relative densities. Blanks correspond to densities which are less than one- 
tenth of the maximum density. Negative signs correspond to negative values of the 
density larger in magnitude than one-tenth of the maximum density. 

Particle simulations have been carried out for this example by Morse and 
Nielson [3] and Denavit and Kruer [ 181. The results of Morse and Nielson agree 

IO 10-q 

/ 
u 

0.5 10-G 
I 

__ QUADRATIC WEIGHT FUNCTIONS, AX=0008 

----- QUADRATIC WEIGHT FUNCTIONS, AX=0016 

- - - FIFTH DEGREE WEIGHT FUNCTIONS, AX=0 016 

FIG. 6. Electrostatic energy for two-stream instability with unequal beams. 
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and densities N, = N(V,) du, with u = 0, &l, &2,..., moving over a neutralizing 
positively charged background. Let 11,(x, t) and U&X, t) denote perturbations in 
density and velocity for each beam. The linearized equations of motion and 
continuity for each beam and Poisson’s equation yield 

@b/at> + ~,@,/W = -@E/m), 
@?,/at> + iv,(av,/ax) + v,(an/ax) = 0, 

- = --he 1 n, . 
8X 0 

Assuming solutions of the form A(x, t) = A(+ k) e-i(Wt-li”) for the perturbation 
quantities yields 

~(9 4 = (4~eW)W,lb - k~21, (21) 
v,(w, k) = (4ne2/m)[l/k(w - kb’,)], (22) 
E(w, k) = -(4rei/k), (23) 

with the dispersion relation 

Dawson has shown that for dv + 0, the left member of Eq. (24) may be written as 
the sum of an integral and a singular term. For a Maxwellian beam density distri- 
bution N( V,) = (n,,/GG ath) exp( VU2/2z&), the dispersion relation becomes 

(4~2/l/~(v,,/Ov) e-c2e*2miw~kAv = 1 + k2hD2 + <Z(C), (25) 

where Z(c) is the plasma dispersion function with t: = co/l/Zkvth . The positive 
sign is to be used in Eq. (25) for Im w > 0 and the negative sign for Im w < 0. 
For each k, Eq. (25) has two complex conjugate roots corresponding to each 
beam. Letting w, = 01, + i/3,, and 5, = aAv/~‘Zv~~ yields 

kAv 
c 

5, Im Z(iJ a, = - 
2~ tan-1 1 + k2XD2 + Re Z(cJ 1 + ka Au, (26) 

and 
/lo = f(k Av/2z-)(ln(4~2v,,/d~Av) - lc2 

- U/2) W[l + k2b2 + i, Re Z(LJ12 + ii, Im ZKXH. (27) 

Equations (21) and (22) are normal modes for a given k and satisfy the normal- 
ization relation 

- XV,) n,(w, k) ndw’, k) = /oH(,, k) ;: ; ” z:: (28) 
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For LIZI + 0 and a Maxwellian beam distribution the function H(w, k) reduces to 

Ww, 7 k) = rrf(2Tri/k OII){l + W2b2)[1 + L-WJI). (29) 

To verify that the instability occurring in the present method, when the distribution 
function is not reconstructed, is indeed a beaming instability, a computation was 
carried out for a Maxwellian beam distribution with qh = 0.1 and Au = 0.02. An 
initial density perturbation was applied to the central beam, 

(EN,+, cos kx n,(x, t = 0) = lo 
for f~ = 0, 
for u f 0. 

with E = 0.0025 and kX, = rr/5. No initial velocity perturbation was applied. The 
central beam velocity at x = x/2k from the code used in Section 4 is given by the 
solid curve in Fig. 8. There is a gentle growth out to t = 46, followed by a sign 
reversal at t = 48 and a very steep growth for t > 48. The electric field for this 
computation first drops rapidly to very low values, then suddenly reappears to 
reach a maximum 23 times its initial value at t = 2n-/kAv = 50. 

I I 

/ 

” 20 40 60 
t 

FIG. 8. Velocity perturbation of central beam for beaming instability test. 
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Expanding the velocity perturbation of the central beam into normal modes and 
using the normalization relations (28), the initial conditions (30) yield 

O,=O co% Au iw,t 
- = 03;2 vth k2hD2 sin kx T 
Au wo”[l + ::i2 + LZ(LJl ’ (31) 

The terms of the sum in Eq. (31) oscillate with the frequencies 01, given by Eq. (26) 
approximately equal to the Doppler frequencies kuAv of the beams and grow 
exponentially with growth rates /30 given by Eq. (27). The damped terms correspond- 
ing to the negative sign in Eq. (27) are ignored. The expression in brackets in the 
denominator of Eq. (3 1) is the Landau denominator which in the present case has a 
minimum near 5, = 1.8. Thus, the dominant terms of the sum in Eq. (31) occur 
for u N 0, which corresponds to the minimum of w,,~ and 

0 c1 *(1.8)~%th/A~ = 13 

which corresponds to the minimum of the Landau denominator. 
For t < 2n-/kAu = 50, the terms corresponding to ~7 N -&13 phase mix and the 

behavior of the velocity perturbation u,,=~ is given by the terms near a = 0. The 
growth rates for these terms is /IoZo = 0.08. The circles in Fig. 8 give values com- 
puted by taking (T = 0, 51, -&2. These values are in good agreement with the 
computer results represented by the solid curve. 

The growth rate for the terms corresponding to u N f13 is & = 0.06. For 
t N 2n/kAv = 50 these terms no longer phase mix. By this time they have grown 
by a factor of approximately 20 and therefore give rise to a strong echo. This is 
evident in the solid line in Fig. 8 for t > 48, and also agrees with the electric field 
results which show a sudden regrowth with a maximum at t = 50 which is 23 times 
the initial electric field. 

APPENDIX A: POSITION AND VELOCITY INCREMENTS 

Let & = f(x. 3 , vk , to) denote the value of the distribution function at the grid 
point (x+ , ~3 at time to and let 6x,,(t) denote the displacement of the sample particle 
of mass fjk located at (xj , r.+J at time to . The position and velocity increments 
8xjk and 6u,, = S& will be computed as functions of time using a Lagrangian 
formulation derived by R. Lewis [19]. This formulation yields an algorithm for 
advancing sample particles which conserves energy independently of the mesh size 
Ax. 
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a. Lagrangian Formulation 

The electrostatic potential I/(X, t) is defined in terms of a base function 4(x) and 
a set of time-dependent coefficients ai by the linear combination 

(AlI 

Here xj = jdx, for j = O,..., J - 1, denote the grid-point locations and J is the 
number of grid points in the x direction. The Lagrangian for a system of charged 
particles is 

j=O k=l 

+ j: if [“t.’ q$‘(x - xj)]’ - y a&x - xi)/ dx, 
3=0 j=O 

642) 

where K is the number of grid points in velocity and $‘(x) = dqS/dx. The first 
term in Eq. (A2) is the kinetic energy, the second term is the negative of the inter- 
action energy and the third term is the electrostatic energy of the system. 

The equations of motion are obtained by taking variations with respect to the 
particle displacements 6xjk , 

J-l 

%k = z. %(t> $‘(xj + &‘k ~ xi), (A3) 

and Poisson’s equation is obtained by taking variations with respect to the poten- 
tial coefficients oli , 

2 "i j: +'(x - xi) +'(x - 4 dx 

= 1 $(X - Xj) dx - 2 f &$b(xi + 6Xia - Xj) 644) 
i=O k=l 

b. Base Function 

The specific algorithm to be used now depends on the form of the base function 
4(x), which determines the charge sharing scheme to be used in advancing particles. 
In the present algorithm, particles having a triangular charge distribution with 
half-width dx are used. The corresponding base function is 

! 

(1/2)[(3/2) + ww for -(3dx/2) < x < -@x/2), 
$Cx> = (3/4) - (x/4” for -@x/2) < x < +@x/2), 

(1/2)[(3/2) - w-42 for @x/2) < x < (3dx/2). 
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Let xi’ denote the grid point location closest to the sample particle (jk) and set 
p = (Xj + SXjk - x,,)/dx; then / p I < 2. 1 When the above base function is 
substituted into the right member of Eq. (A3) the sum reduces to three terms and 
we have 

Sfjl, = (l/dx)[-cQ-,($ - p) - 2qp + ai~+l(~ + p)]. 645) 

Substituting the base function into Eq. (A4) yields 

(1/6d~)(--~-~ - 2a!ml + 601~ - 201~+~ - CQ+J = dx - ,&, (‘46) 

where 
J-l K 

Pi = c 1 hk& + S&k - %) 
i=O k=l 

647) 

is the charge assigned to grid point j. Note that the left member of Eq. (A6) is a 
finite-difference representation of the second derivative of the potential. 

Since periodic boundary conditions are assumed, it is convenient to solve 
Poisson’s equation by discrete Fourier-transforms [ 15, 161. Let 

J--1 
ol, = 1 &2vilJh 

j=O 

and 
J-l 

fin = C ,$42niiJh 

j=O 

denote the transforms of the arrays 01~ and ,6$ . Multiplying Eq. (A6) by exp(2xinjl.Q 
summing overj and solving for I&, yields 

z, = -Pn 
4J sin2(nn/J)[1 - Q sin2(nn/J)J ’ 

The array 01~ is then obtained by taking the inverse transform of G, . 
The time integration for the quantities 6xjl, and (Ye is carried out by a conventional 

leap-frog scheme. Since the distribution function requires simultaneous knowledge 
of the particle positions and velocities, a half-time step is taken just before and 
after each reconstruction of the distribution function. 

The computing time to advance the sample particle was found to be 
approximately 0.5 msec per particle, per time step, on the CDC 3800. The com- 
puting time to reconstruct the distribution function with quadratic weight functions 
was approximately 0.7 msec per particle. 
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c. Energy Conservation 

AS a consequence of the Lagrangian formulation, the present algorithm for 
advancing the sample particles conserves momentum and energy independently of 
the mesh size dx. The expression for the total energy is provided by the 
Hamiltonian 

H = ; ‘2 2 j& 8R$ + ; ,J$ olicxj r‘: +‘(x - xi) &(x - xj) dx. (A9) 
j=o k=l 2.1=0 

The first term in the right member of Eq. (A9) represents the kinetic energy of the 
system and the second term represents the electrostatic energy U. The latter term 
may be conveniently evaluated using the Fourier transformed array 6, , 

J-l 
U(t) = 2 C &,,ol-, sin2 9 (1 - 3 sin2 +j. 

?L=O 
(AlO) 

APPENDIX B: DIFFUSION RATES ON A DISCRETE GRID 

After reconstruction, the distribution function is not defined on a continuum as 
assumed in Section 3d, but only at discrete grid points kAv and we have 

j(v) = Cj, C w(v - vj) 6(v - k Au). 
j k 

Taking the Fourier transform with respect to velocity yields 

I?(q) = CJ;. C w(k Au - vj) eilcqAv. 
, k 

Letj’Av denote the grid point closest to the left of vj andpj = vj/Av - j’. We have 

R(q) = C Wdq, pdJ;einui, (Bl) 

with 

w[(k’ - pj) Au] ei(k’-~?)QAu. 
k’=l-Q 

Comparing Eq. (Bl) with Eq. (17) we observe that the function W,(q, pj) plays 
the role of the smoothing function W(q) introduced in Section 3d. However, 
since WG(q,pj) depends on pj , i.e., on the location of particle j relative to the 
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nearest grid points, it cannot be factored out of the sum as done in Eq. (17). It 
appears that each particle is diffused at a different rate depending on its location 
relative to the nearest grid points. Particles located midway between two grid points 
( pj = l/2) are diffused most, while for particles approaching a grid point ( pj + 0 
or pj + 1) the diffusion goes to zero. 

If we assume that the particles are located at random between grid points with 
uniform probability, the diffusion rate D,(q, p) = 1 - W,(q, p) may be averaged 
to give 

GM)) = 1 - j-1 wdq, P) dp 
(B3) 

= 1 - 2 l1 w[(k’ - p) LIZI] ~8~‘-~)~“ dp. 
k’=l-rJ 0 

Setting ZJ = (k’ - p) Au, the sum in the last equation reduces to 

This expression is identical to the Fourier transform of the weight function con- 
sidered in Section 3d. For linear and quadratic weight functions, we have, respec- 
tively, 

and 

W(l)(q) = [1/(q6u/2)2] sin2(qLlu/2), (B4) 

Wt2)(q) = [I/(q AzJ/~)~] sin2(q AU/~) [I + (sin (q du)/q Au) - cos2(qdu/2)]. (B5) 

These expressions yield the curves shown in Fig. 4 and the diffusion rates given in 
Table I. 

If we assume that the particles remain close to the grid points, a different estimate 
of the diffusion rates may be obtained by expanding W,(q, p) for small p. For 
small values of q we may also expand as in Eqs. (20) and for quadratic weight 
functions this gives 

n.dq, PI = - $f ($!$-)*Eo = 12 2 (G,,. 
o=o 

This estimate of the diffusion rates is applicable in the x direction to small values 
of the velocity for which 1 6x 1 < Ax. In the velocity direction it is applicable to 
regions of weak electric field for which 1 6v 1 < Au. 
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